Int. J. Solids Structures, 1971, Vol. 7, pp. 667 to 683. Pergamon Press. Printed in Great Britain

ON THE EQUILIBRIUM AND STABILITY OF
DISCRETE ONE-WAY STRUCTURAL SYSTEMS+t

I. W. BURGESS

Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada

Abstract—One-way structural systems are discussed in the context of the generalized-coordinate approach to
discrete systems. In these terms a general procedure for the treatment of such systems is initiated, and conditions
for equilibrium and stability of equilibrium are developed. The application of the general theory to particular
problems is demonstrated in three simple structural models with two degrees of freedom.

1. INTRODUCTION

AN INCREASING amount of interest is currently being shown in the analysis of structural
systems with “‘one-way’” characteristics. These are structures whose deformations under
load are restricted by rigid barriers from going into certain regions. The term *“‘one-way”
refers to the fact that when restrained by such a barrier the local deformations of a system
can only move in the general direction away from the barrier.

The most prolific field of study to date has been the buckling of a thin circular elastic
ring loaded circumferentially within a rigid cavity. The initial investigation of this problem
was by Lo et al. [1] using a Tsien *““equal-energy” criterion to determine “‘buckling loads™.
A later study by Elkon et al. [2] solved the problem more satisfactorily, and both Chan
and McMinn [3] and Britvec [4] reworked the identical problem, Britvec working in the
context of thermal loading. Further studies have been carried out for similar problems,
under different loading conditions and with initial imperfections in the ring and in the rigid
boundary. A logical extension of the work on rings was the analysis by Tong and Pian [5]
of the buckling of a spherical shell loaded within a rigid spherical cavity. In all of this work
the system under consideration has been treated as a continuum and the treatment has been
in *“vectorial” rather than “variational’’ terms. Two studies unconnected with rings have
been carried out by Allan [6, 7], on one-way situations of axially loaded elastic columns. The
first concerns both finite and infinite laterally loaded columns prevented from deflecting
to one side of their initial axes by a rigid barrier, and the second concerns a similar problem
of columns with elastic foundations. The analyses presented are once again particular
vectorial treatments in continuum terms.

The problems so far described all have a high degree of symmetry, and if real engineering
problems of one-way systems are to extend to more complex, less symmetrical types of
structure it is inevitable that continuum analysis will have to give way as a practical method
of solution to treatments which represent a continuum approximately as a discrete system.
Examples of such methods are the Rayleigh-Ritz, Galerkin and finite-element procedures,
which are well-known and powerful tools in the analysis of practical structural systems.
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These methods use the potential energy of a system expressed as a function of a finite
number of generalised coordinates which completely describe the possible displacements
of the system. For normal systems, without one-way barriers to their displacements, the
basic conditions in potential-energy terms for statical equilibrium and stability of equili-
brium are well established, having their roots in the classical mechanics of the eighteenth
century. Recent work on the general theory of discrete systems is thus almost entirely
confined to “non-linear” studies concerned chiefly with equilibrium-path configurations
about positions of critical equilibrium. Notable among these is the work of Thompson,
(8, 9], on the theory of snapping- and bifurcation-point configurations in the context of
generalized coordinates.

In the field of the structural mechanics of one-way systems there has been no specific
study in general terms until the present, either in the continuum or discrete context. No
general rules are available for the treatment of such systems by energy methods, and even
the basic conditions for equilibrium and stability have not so far been postulated. Without
such basic information the engineer is unable to undertake discretized treatments of com-
plex continuum problems. The object of the present work is to provide a formal basis for
the treatment of one-way structural systems in discrete terms, and to develop the basic
criteria for equilibrium and stability in terms of generalized coordinates. It will be necessary
in the course of the work to define a specialized notation to help in dealing with arbitrarily
large determinants.

2. DISCUSSION

We consider a discrete conservative structural system whose configurations are com-
pletely described by the values of n generalized coordinates Q; and whose loading state is
described by the value of a single load-parameter A. We define a “free system’” as one whose
generalized coordinates Q; are all free to take any independent small increments, either
positive or negative. We also define a “one-way system” as one whose generalized coordi-
nates are prevented by impassable boundaries to their configuration-space from taking
increments in certain directions.

Boundaries to a system’s permissible configuration-space are caused by the effect of
physical rigid boundaries to the motion of the physical system. Any physical boundary
to the system’s displacements will cause boundaries in configuration-space, separating
regions in which the system’s generalized coordinates are free to take values from prohibited
regions. It does not necessarily follow that a continuous physical boundary will give rise
to a continuous boundary in configuration-space ; it may, in fact, cause several continuous
boundaries in configuration-space, which may intersect each other in discontinuities. We
can find all of these configuration-space boundaries for a system by considering the limiting
configurations of the system caused by its physical boundaries, and can express each of
these configuration-space boundaries as an equation of the form Fi(Q,,Q,,...) = 0. We
can also fix the function F{(Q,) so that its value is always positive when the configuration
lies on the permissible side of the jth boundary, and negative for any configuration within
the space prohibited by the boundary. If there are M such configuration-space boundaries
then each of the M boundary functions F/(Q,) must be greater than or equal to zero for any
permissible configuration. Each boundary function whose value is zero indicates that the
system’s configuration lies upon the corresponding boundary. The boundaries to a system’s
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configuration-space are assumed fixed in that space, and since the physical boundaries are
rigid they are in no way dependent upon the current value of the loading parameter.
We consider a conservative structural system whose total potential energy has the form,

V(@i A) = U(Q)— A«Q), (1)

which is the strain energy of distortion of the system less the work done on the system by
its load in bringing about the distortion. The condition for statical equilibrium of such a
system in the form due to Fourier [10] may be stated as, “‘a system is in equilibrium if, for
any permissible virtual displacement from its position at constant load, the first variation
of its potential energy is greater than or equal to zero”. This statement implies that the gen-
eralized forces acting on the system when it is displaced infinitesimally in any permissible
direction must either act towards the original position or be zero. This principle may be
demonstrated conceptually by considering states of two-degrees-of-freedom systems around
positions of interest. Figures 1(a)-(h), shows certain of these states, in which the potential-
energy fields around the positions of interest are shown as ‘“‘contours” of equal potential
energy and the dashed arrows show the directions of decrease of potential energy between
contours (or, the directions of the generalized forces). Continuous, well-behaved potential
energy forms are assumed in these contour-pictures as they are throughout the analysis.
With regard to Fig. 1 it is evident that the points X show free equilibrium configurations
in (a) and (b), coincident free and one-way equilibrium configurations in (c) and (d), genuine
one-way equilibrium configurations in (e), (f) and (h), and no equilibrium in (g).

FIG. 1. Potential energy contours around points of interest in two-degrees-of-freedom one-way systems.
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The definition of stability for a statical equilibrium position is that if any possible smalil
displacement is given to the system and the displacing force is then released, the system will
remain indefinitely in ‘‘the vicinity” of its equilibrium position. In more realistic terms, if
the system has damping of a ““viscous”” type, it will eventually return to rest at its equilibrium
position. This definition is quite adequate for one-way systems if we restrict all displace-
ments to permissible zones. The Dirichlet criterion, which says that we must have a real
local potential energy minimum for stability of equilibrium is still valid if we do not exclude
discontinuous minima. Hence, Figs. 1{a), (c), (€) and (h) show stable equilibrium positions
at X [where Fig. 1(h) shows a wholly discontinuous potential energy minimum] and Figs.
1(b), (d) and (f) show unstable equilibrium positions at X.

3. EQUILIBRIUM CONDITIONS

The variation of the potential energy of a system in a given state of loading can be
expanded in power-series form about a given configuration Q, = QF, in terms of the incre-
ments g; of the n generalized coordinates Q;.

IM:

n 1 n
V(Qi, A) = V(QF, A+ Zl VAQF, Naito; Y ViAQK, N+ . 2
i= ti =1

=1 j=

Throughout this paper the subscript i appended to a function of the generalized co-
ordinates denotes a partial differentiation by the appropriate generalized coordinate Q,.
A summed series is always preceded by X in order to distinguish series from single terms.

In its configuration Q; = QF the system lies upon m of its total of M boundaries. We
call these m boundaries the system’s “effective boundaries” in its given configuration. If
we assume for the present that m < n, the system is free to change its configuration without
moving away from any of these boundaries. To show that such a system is in equilibrium
it will be necessary and sufficient to show that:

(a) For any incremental displacement which does not take the system away from any
of its m effective boundaries the first variation of its potential energy is zero.

(b) For any incremental displacement which takes the system away from any or all of
its effective boundaries the first variation of its potential energy is greater than or equal to
Zero.

We consider first an arbitrary incremental displacement of the former, type (a). The
first variation of the potential energy is given by,

M:

oV =

i

Vigi = 0. G)

1

In this case, the first variation of each of the effective boundary functions F'(Q;) remains
zero throughout the displacement. In order to apply these kinematic constraints we multiply
each boundary function F(Q,) by a Lagrange multiplier A" and add its first variation to (3).

5 A’F’], -3 |:V,-+ 5 A'F;]q,.. )
=1

r i=1 r=1

oW = 5V+5[

Having amended the first variation of the potential energy in this fashion we are then
entitled to treat each of the ¢; as independent and arbitrary. We can, thus, separate out the



On the equilibrium and stability of discrete one-way structural systems 671

n equations,

Vit Y W =0, (5)

r=1

in which the m Lagrange multipliers A" are the unknown quantities. Considering only the
first m of the equations (5) we can express this system of equations in the notation defined
in the Appendix as,

[¢7].[4] = [~ W] (6)

Here [¢T] denotes the transpose of the matrix [¢]. Noting that the determinant of a
matrix is identical to the determinant of its transpose we can now solve (6) for each of the
Lagrange multipliers.

,lfzw, j=1,....m )

|l
These solutions for A/ are now inserted into the remaining (n —m) equations (5), giving

SRV, (8)

where p is any integer from (m + 1) to n. These equations can be expressed as,

Vlol— Y VieFi); =0, )]
i=1
which is equivalent to,
1Q,l =0, p=(m+1),...,n (10)

Consider now an arbitrary incremental displacement which takes the system away from
any or all of its m effective boundaries. For any such displacement we know by definition
that the first variation of each boundary function F/(Q,) must be greater than or equal to
zero, and we say that the first variation of the potential energy must be greater than or
equal to zero for equilibrium. Since there is no continuous potential energy minimum in-
volved in this process we cannot use a Lagrange multiplier method to include the con-
straining conditions. Instead we use a simple substitution process. An incremental move-
ment of the system away from some or all of its effective boundaries may be described
by the values of the m quantities 6F” together with the values of any (n—m) of the g;. Separ-
ating the first m of the g, from the last (n—m), we can write m equations

Y Fig, =6F- % F{,qp, ji=1....m (11
=1

r p=(m+1)

The solutions for the first m of the g; are,

N

p=(m+1)

9]

q, .. (12)
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This may be rewritten,
_ _|¢(6F), L |$FG,
4 =—"+"— — ==
'¢' p=(m+1) |¢|

All displacements are characterized by the property that the first variation of the potential
energy must be greater than or equal to zero. The first variation is,

(13)

5V: Z Viqi’
i=1
m n __V Fj n
— Z Z [ rqp|¢( p)lr]+ Z I/pqp
r=1p=(m+1) |¢| p=(m+1)
n o V|p(SF
4§ HeOF), 4
r=1 |¢|
This is equivalent to,
z Q] | & Vip(OF)
oV = q,—+ e 15
I T P 7T ()
From (10) we know that [€2,| is zero, so that (15) can be rewritten,
m . V Jj
V=73 5F’M. (16)
i=1 o]

We have defined that each permissible 6F/ must be greater than or equal to zero. We
also know that the value of each |¢(V))|//|$| is constant at fixed load and a given configura-
tion, and is independent of the incremental displacements g;. Hence the condition for §V'to
be greater than or equal to zero for arbitrary positive 5F/ is that each of the coefficients
|¢(V,)/|¢| must be greater than or equal to zero.

The conditions for equilibrium of a system at a fixed loading state and in a given
configuration on m effective boundaries are then,

IQ,} =0, p=(m+1),...,n

and

£l

LAY :
>0, j=1...,m 17
9 4
In cases where m = n it is easily seen that (15) reduces to (16) without reference to
|Q,| so that the n equilibrium conditions are then all of the form,

() .= "
| >0, ji=1...,n (18)

In cases where m > n it is necessary to show that the condition (18) is satisfied for at
least one combination of n of the m boundaries for equilibrium.

It is helpful conceptually if we consider each of the expressions |P(V,)}l//|¢| as being
equivalent to the generalized force of reaction between the system and its jth boundary
at its given configuration. If one of these forces is zero it is clear that the boundary repre-
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sented by F/ = 0 has no effect on the equilibrium state other than to limit the directions
in which the system can be disturbed.

Then if, say, k of these forces are zero we effectively have a system in equilibrium on
(m— k) boundaries, to which k boundaries have been added without disturbing the state.
These k additional boundaries, however, still restrict the directions in which the system
can be disturbed from its equilibrium position, and thus cannot be completely ignored in
considering the stability of an equilibrium state. This type of equilibrium state may be
considered as a coincidence of (k + 1) different equilibrium states, of which the coincident
state with the lowest number of boundaries [i.e. (m— k)] is the basic state.

4. STABILITY OF EQUILIBRIUM

The most general case of a one-way equilibrium state is that in which m < n and all
the terms |¢(V,)l’/|¢| are positive. This is the case with which this section is primarily
concerned.

The case in which m = n and all terms |@(V,)l/|$| are positive is obviously stable and
would require finite force to cause any small displacement from its equilibrium position.

The case of coincident equilibrium states is complicated by the fact that while the system
is not held to its additional boundaries these must still be considered as rigid barriers to
possible trial displacements. Obviously if we can show the basic equilibrium state to be
stable without reference to any additional boundaries the imposition of these boundaries
cannot make the equilibrium unstable. However, if the basic state is unstable the directions
of perturbation which show instability may well lie entirely within the regions prohibited
by the additional boundaries, in which case the equilibrium is still stable. In this paper the
case of coincident equilibrium states will be dealt with briefly since its rigorous treatment
would be algebraically extremely tiresome. The general principles of the treatment will
however be set out later and it will be seen that it is quite feasible for suitably simple par-
ticular systems.

First, however, we consider structural systems having an equilibrium state for which
m < n and all |¢p(V,)J'/|¢| are positive.

We wish to determine whether an equilibrium state is stable, unstable, or critical.
Returning to the power series (2) for the variation of potential energy about a fixed con-
figuration, we have already specified that the first variation is zero for any displacements
upon all m effective boundaries. Hence the dominant variation of potential energy for small
displacements will be the second. Since such displacements are restricted to all m boundaries
we use once again the amended form of potential energy,

W(Qn A) = V(Qu A+ Y FHQ). 19)
k=1

The first variation of W(Q;, A) is zero when A* has the value —|¢(V,)*/|¢|, and we can
write the second variation,

noonq m Vj
W=} ZE[V:,-— > I¢|(¢|')l F?j]qiq,-- (20)

i=1j=1

Before we can minimize this second variation for displacements restricted to the m
boundaries it is necessary once again to amend the potential energy by introducing new
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Lagrange multipliers y*. We call this further amended form of the potential energy
X(Q;, A) where,

8X = Z q,{z'[ Z Via;+ Z Z i"F”qJ] +i“ u"F;‘}. (1)
k=1

k=1j=1

We can write this as,

X = Z ql{z, Z Wiq;+ Z u“F"} (22)

For stability we must show that the minimum value of 52X is positive. First we obtain
the derivatives of 82X with respect to each of the n generalized coordinates, to locate the
directions of extremum 62X

8 52X n m
aq; j=1 k=1
We now solve the first m of the equations for the Lagrange multipliers u*, which are,
“ lo(W,)I*
Nk = Z I:_q j . . (24)
=1 |l

Substituting these values into (22) we obtain an expression for the second variation of
the amended potential energy in all directions for which it is an extremum,

ilqiq[ - S, | ¢|)']. (29)

k=1

IIM=

1
2
X--—

For stability of equilibrium we must show that 62X is positive definite, subject still to
the m constraints,

ZF’q, 0, j=1,....,m (26)

If we solve (26) for the first m of the g, in terms of the last (n—m) we have,

U R (1)
g t=(m+1) ' l¢' ’
We substitute these first m of the g; into (25) and obtain an expression for 62X g in terms

of the (n—m) independent variables g,. Omitting a certain amount of algebraic manipu-
lation, this process gives,

=1,...,m (27)

n n

X 1
?Xp= X PIRED G 7 (28)

p=(m+1)t=(m+ 1)2!
in which X, is given by

S, n L B,

o :[W"' = |¢| £
- @W_ﬂ] 29

M

r=1s=1
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The expression for 52X given by (28) is then a homogeneous quadratic function of
(n—m) variables g, with constant coefficients X, at a given configuration and load. The
condition for such a function to be positive definite is that the determinant of the matrix
of the coefficients X , is positive, and that each of its successively smaller principal minor
determinants is also positive. In other words a total of (n—m) determinants of the co-
efficients X ,,, of successively smaller dimensions and ending with a single coefficient
X (m+ 1)(m+ 1)» Must be nositive for stability of equilibrium. If we consider the diagonalization
of the matrix [X ,] it can easily be seen that the whole determinant |X | must become zero
at a critical equilibrium state at which stability is lost, while its principal minors may be
either greater than or equal to zero.

We can now return briefly to the case of coincident equilibrium states, simply to formal-
ize the process for determining the stability of particular cases. If we find in the equilibrium
analysis that k of the m effective boundaries are in fact redundant due to their corresponding
terms |$(V,)//I¢] being zero we can rewrite (28) for the “basic” equilibrium state which
ignores these additional boundaries,

n n

1
X 4,4, - (28a)

p=(m+1-k)t=(m+l—k)2!

52X, =

Then, the stability condition is in the form of (k+ 1) simultaneous inequalities,

n

Z ‘ Xptqpqt > 03

p=(mt1—k)t=(m+1-k)

for all

SFi= Y Flg; >0, j=(m—k)...,m. (30)

i=1

This condition will obviously only be tractable in simple cases with either very few
generalized coordinates or a high degree of symmetry.

5. SIMPLE MODELS OF ONE-WAY SYSTEMS

We now use three simple two-degrees-of-freedom linkages to demonstrate the applica-
tion of the theory in different situations. The first model will be more fully worked than the
other two, to avoid repetition of basic algebra.

{a) System with two coordinates and two boundaries

The linkage is shown in Fig. 2. The joints at A4, B, C, D, are pin-joints allowing rotation
in the same plane, and the rotation at B and C is resisted by linear torsional springs of
stiffness k. The springs are completely stress-free when the system is unloaded and Q, = id,
Q, = id. There are two rigid barriers to the motion of B and C, each at a distance d from
the loading-axis (where d «< L). When the compressive load P is increased from zero
both @, and @, will increase stably until Q, reaches its barrier. With further increase of
load Q, continues to increase until it reaches its own barrier, after which no further dis-
placement is possible and the load can increase infinitely. The role of the general theory is
to confirm this intuitive observation in quantitative terms and to reveal any additional
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FiG. 2. Link-model with two boundaries. (a) Unloaded configuration. (b) With increasing load. (c¢) Other
possible configurations.

equilibrium paths. The system has just two boundary functions F' = (d—Q,) and F* =
(d—Q,), so that there are four possible distinct types of configuration. These are, a free
configuration with both F*! and F? greater than zero, the configurations with one of the
boundary functions zero, and the configuration with both boundary functions zero.

The total potential energy for this model is,

k
V= W[5Q% —80,0,+505+30,d—3Q,d+ 75d*~ A2Q7 - 20,0, +203
—3d*)] + higher order terms. 31)

The load-parameter A is (PL/k). The relevant derivatives are,

k
V= §[Q1(5- 2A)+ Q5 (A—4)~3d],
L 32)
V, = P[Ql(/\ —4)+Q4(5—2A)— 3],
k
Vii=V = 1“2‘(5*‘2/\),
‘ (33)
Vi, = i—z(/\—z&),
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(i) The free configuration. If both F! and F? are positive the equilibrium conditions are
V; = 0and V, = 0. Solving these together we obtain,

Q0 = H2—-AA-3)"{A-1)7
0, = WA-3) A=

When Q, reaches its limiting value of d, either A = 0-56 and Q, = 0-69d, or A = 2-69
and Q, = —1.44d. For stability we know that both the whole stability determinant |V}
and its principal minor ¥;; must be positive. This is only fulfilled for A < 1.

Equations (35) indicate three equilibrium paths, one stable and two unstable, which are
shown in Fig. 3. Only the initial loading-path between A = 0 and A = 0-56 is stable. The
second unstable complementary path meets the boundary F? = 0at A = 3-32,Q, = —1.32d.

(ii) Configurations with F! = 0. If F! = 0 with F? positive the equilibrium conditions
are |Q,] = Oand |p(¥)|'/|¢| = 0, where |¢| = Fi,|¢(V)]' = V, and,

Q| = FiV,—F3V;. (36)

(35

@ F-o,
@ F2=Ov

(© Free path.

~
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Fi1G. 3. Equilibrium paths of the model of Fig. 2. Unstable paths denoted by broken lines.

The former condition yields the solution,
Q, = d(3-25—- A)(5-2A)" %, 37)

which will only be valid when the second condition also holds. These regions are given by
0, > 0:69d and —144d < @, < 0-5d. The two equilibrium paths are shown in Fig. 3,
and join the free equilibrium paths where these meet the boundary F; = 0. The stability
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of the paths is indicated by the sign of the single element X ,,, where,

Fl Fl 2
X2z = Vaa =W + V(F—Z) : (38)
This indicates that the equilibrium is stable for A < 2.5, confirming that the continuation
of the initial free path on F! = 0 is itself stable, while its complementary path on F! = 0
which lies above A = 2-69 is wholly unstable. The stable path meets F? = 0 at A = 1.75.

(iti) Configurations with F? = 0. If F? = 0 and F! is positive the treatment is similar
to (ii) above, giving just one, unstable, equilibrium path which meets an unstable free
equilibrium path at A = 3.32,Q, = —1.32d.

(iv) Configuration with F* =0, F2 = 0. If F! = 0 and F? = 0 the equilibrium con-
ditions are that |@(V,)|'/|¢| = 0, and |p(V,)]*/|¢| > 0, where,

¢l = FiF3—F3F3,
gVt = ViF3=V,F1, (39)
PV = FiV,~F3V,.

These conditions say simply that there is equilibrium if A > 1-75, which must be stable.

(b) System which exhibits loss of stability

The linkage is shown in Fig. 4, and in order to demonstrate a loss of stability has initial
symmetry of deformations. The initial value of both Q, and Q, is 3d, and a single rigid
point barrier is placed midway between B and C, at a distance d from the loading axis.
We can deduce intuitively that as the load P is increased from zero both Q, and Q, increase
stably at the same rate until the mid-point of BC touches the rigid barrier (we say that the
barrier is so placed that it is exactly at the mid-point of BC in this deformed state rather
than the initial state). There will be no change of @, or Q, with further increase of load
until a critical load is reached at which loss of stability occurs and the system buckles

FIG. 4. (a) Link-model with single boundary and loss of stability. (b) Equilibrium paths.
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asymmetrically about the centre-point of BC. The role of the general theory will now be to
confirm our conclusions in quantitative terms, find the critical load, and discover any
possible complementary paths.

The relevant relations are in this case,
F' = 2d— 0:—0,,
k
V = 5730501 ~80,0:+503 ~ 0:d— Qud +3d” (40)
~A20Q7-20,0,+203 —3d*)]+ ...

The relevant derivatives of these are,

k
V= P[Q1(5—2A)+Q2(A—4)—%d],

L (41)
V, = F[QI(A—4)+Q2(5—2A)—%d],

k

Mii=V, = P(S—z/\),

" (42)
Via = a(A~4)
Fi=F}=—1. (43)

(i) Free equilibrium. Putting ¥, = 0O and V, = 0 for F, > 0 we find the free equilibrium
equations,

0,=0Q;= %d(l—/\)_l- (44)

Both Q, and Q, reach the value d simultaneously at A = 0-5. Evaluating |V} and V}, we
find that the initial path from A = 0 to A = 0-5 is stable and its complementary path
(Fig. 4) is unstable.
(i) Configurations with F' = 0. The equilibrium conditions |Q,| = 0 and |§(V,)'/¢|
give,
@d-0,)(A=-3)=0, (45)

d(17—4A)+Q,(6A—18) = 0. (46)
The equation (45) gives a *‘trivial” equilibrium path with Q, = @, =d for all A, or

adjacent equilibrium states at A = 3. Putting Q, = d in (46) gives us that the equilibrium
is valid for A > 0-5 Stability is again determined by the sign of X, ,, which is,

6k
X;p = FG—A), 47)

so that the equilibrium state loses stability at A = 3.
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(c) System with coincident equilibrium states

The linkage is shown in Fig. 5. The connections at 4, B, C, are now not pin-joints but
universal-joints. The torsional spring of constant k, at A resists deflection of B in the direc-
tion of the §,-axis and the spring of constant k, at C resists deflection of B in the direction
of the Q,-axis, perpendicular to Q, . In the unloaded, unstressed state ABC is straight. The
potential energy of the system is given by,

k, P k, P
- Q%(ZT;_Z)+Q;(2_ZE-E)+ 9)

FI1G. 5. (a) Link-model with coincident equilibrium states. (b) Plan view.

Two smooth rigid boundary surfaces are fixed in space at B, placed symmetrically
about the Q,-axis. The system’s boundary functions due to these boundaries are,

F, =Q1+Q1,} @)

F?=0,-0,.

It is evident that we have coincidence of the equilibrium states on either two boun-
daries or one boundary with a free equilibrium state. The problem is to show that this state
is stable with increasing load until it reaches a discrete critical equilibrium state, and to
determine the critical load.

The so-called “basic’ equilibrium state is the free equilibrium state, so that for stability
we must show that §2V is positive in all incremental regions around the equilibrium point
for which both 6F! and 8F? are positive or zero. In this case, 2V = gi(k, /2L*> — P/L)+
q3(k,/2L% — P/L), so if we say k, is smaller than k, we know that 6°V is positive definite
for P values below (k,/2L) and that 5>V is negative definite for P above (k,/2L). We have
therefore to look in the range k,/2L < P < k,/2L for our critical equilibrium state at which
the system loses stability.
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Consider a deflection from the equilibrium position into the permissible-space with
respect to both boundaries. For such a displacement we know that g, > q, and g, > —gq,,
so that,

ki+k, 2P
2L L|
The inequality (50) obviously becomes the equation 62V = gi[(k, +k,)/2L*—2P/L]

for the limiting displacements along either of the boundaries. Hence we know that 6V is
positive definite within the prescribed region if P < (k, +k,)/2L, and that 6%V becomes
zero along both boundaries if P = (k, +k,)/2L. This is then the critical load at which the

equilibrium loses its stability. The direction of initial postbuckled motion will lie along
either of the two boundaries.

3V > qf( (50)

6. CONCLUDING REMARKS

The main results from the above study may be summarized as follows:
1. For the equilibrium of a system of n degrees of freedom on m effective boundaries
(m < n) we have,

|Qp|=0, i=(m+1),...,n,

and
gV NPl =0,  j=1,...,m.
Putting m = 0 these reduce to the usual conditions for a free system,
V. =0, i=1,...,n
2. For stability of equilibrium we have,
|X | > 0, and all principal minors >0, p,t=m+1),...,n
Putting m = 0 these reduce to the usual conditions for a (non-diagonalized) free system,
|V, > 0, and all principal minors >0, Lj=1,...,n

It is hoped that these conditions will provide a starting point for future studies in the
field of one-way systems. It has already been shown [11] that problems of an elastic ring
loaded within a rigid circular cavity, and of the one-way case of the buckling of a beam on
an elastic foundation, can be solved satisfactorily by discrete methods using the general
theory given here.
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7. APPENDIX

Notation

For convenience in the handling of arrays containing large numbers of elements,
often in determinant form, we use a specialized notation. This is mainly concerned with
writing concisely the process for solving linear simultaneous equations.

(i) General principles of notation. Consider a matrix of dimensions m x m, whose typical
element placed in the ith column and jth row is denoted by A;; (alternative forms may be
AS, Af, AY). We shall denote this matrix as [4;,] and its determinant as |4, . A vector of
m elements b; is described as [b;].

If the kth column of [4,;] is replaced by the vector [b;] we denote the resulting matrix as
[A;{b))], and its determinant as |4;{b;)|,. Similarly, if the Ith row of [4,;] is replaced by the
vector [b;], we denote the resulting matrix as [A;(b,)]}' and its determinant as |4, (b,)|"

The significance of the above may be demonstrated by considering a system of m linear
simultaneous equations in m independent variables. This system may be described as,

[Aij] Jx] = [bj]-
The m solutions of these equations are given by,

_ | Aib

Y

(i) Specific notation used. The most common array used in the general theory is [F¢], the
m x m matrix of the first m derivatives of the m effective boundary functions F7, arranged so
that the subscript s denotes the column, and the superscript r the row, of a given element.
We call this matrix [¢] for convenience. The other arbitrarily defined array is [Q,] which is
of dimensions (m+ 1) x (m+ 1). This is formed by adding to the square array [¢] an (m+ 1)th
column [F%], where ¢ is the integer subscript in [Q,], and an (m+ 1)th row [V,] where s runs
from 1 to m. The element V, is placed in the “corner’’ location [(m+ 1), (m+ 1)]. The subscript
t can take any specific integer value between (m+ 1) and n. The determinants of these two
defined matrices are related by the property,

Q) = Vil - -; VIg(F;.

It should be noted that the clements of the substituted column vector [F/] each have an
identical subscript t, being the subscript in [Q,], while j runs from 1 to m.
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A further array [X ,] is used in the stability theory, and this has dimensions (n—m) x
(n—m). The integer subscripts p and ¢ each run from (m+ 1) to n.

{Received 16 March 1970; revised 17 August 1970)

AbBeTpakT—OQ6CyKaaOTCs OLHOMEPHBIE CTPYKTYPHbIE CHCTEMbI B CMbICie OGOOLIEHHBIX KOOPAHHAT
IS AUCKPETHBIX cHcTem, C ITOM TOUYKM 3PEHMR HaYuHaeTCs obwas MeToauka 06paboTku TAKHX CHCTEM H
YCTAHOBAUBAIOTCA YCAOBUS [UIs PABHOBECHSt M yCToHYMBOCTH pasHoBecus. faetca cnocob npumenenss
obuieit Teopun K HacTHoim npobaemam, HA OCHOBE TPEX NPOCTHIX CTPYKTYPHBIX MOACIRH ¢ JABYMS CTerne-
ssamu ¢aoBoant.



